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A GITHUB USER FILTERING

To implement the analytics dashboard on their profile page, users must add a string to their

Readme.md in a commit to their own repository. We exploited this to determine if and when

GitHub users adopted the analytics dashboard.

We filtered the users included in the analysis based on multiple characteristics. First, we limited

the sample to personal GitHub accounts of individual developers by removing organizational

accounts and bots. This was achieved by filtering users based on their names and an unrealistically

high number of contributions (Dey et al., 2020; Moldon et al., 2021). Second, we restricted the

sample to users who had at least ten commits within our time frame to ensure active use of GitHub.

Third, we narrowed down the sample to developers who adopted the analytics dashboard and did not

remove it during our study period. This allows us to compare the impact of the dashboard among

adopters. Fourth, we excluded the commits made by users to their own Readme.md. Including these

commits could bias our estimations because adopter must modify their Readme.md to implement

the dashboard. The collection of this data from GhArchive (https://www.gharchive.org) was only

feasible thanks to the Python Multiprocess module (McKerns and Aivazis, 2010; McKerns et al.,

2011).

B BERT MODEL PERFORMANCE

A fine tuned BERT model has shown to outperform other approaches in sentiment analysis

within the software engineering domain (Wu et al., 2021). To fine tune a BERT model for our

data we compiled a ground truth data set that is representative of the GitHub commit messages.

This ground truth data set is based on five publicly available data sets and consists of short

messages from software development that have been manually labeled as positive, negative, or

neutral (Calefato et al., 2018; Lin et al., 2018; Novielli et al., 2020). We calculate a commit
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message’s sentiment by subtracting the predicted probability of a negative message from the

predicted probability of a positive message.

Table A1: Fine Tuned BERT Model Performance

Precision Recall F1

Negative messages 0.80 0.78 0.79
Neutral messages 0.85 0.83 0.84
Positive messages 0.80 0.85 0.82

Note: These performance statistics are cal-
culated based on the test dataset that resulted
from a 80/20 split of the assembled ground-
truth dataset. The test data encompasses 3,582
short messages. Precision = TP / (TP + FP).
Recall = TP / (TP + FN). F1 = 2PR / (P + R).
TP = True Positive. FP = False Positive. FN
= False Negative. P = Precision. R = Recall.

C SYNTHETIC DID BACKGROUND

For every cohort c our modified synthetic difference-in-differences (synthDiD, based on Berman

and Israeli, 2022) algorithm solves the following minimization problem ten times (every time with

a new random sample of non-adopters):

(αc, β0, ui, τt) = arg min
αc,β0,ui,τt

 ∑
i∈Nc

c+mmax∑
t=c+mmin

(yit − β0 − ui − τt − AfterAdoptionit · αc)2 ωiλt

 (1)

where αc is the average treatment effect on the treated (ATT) of cohort c, β0 is the intercept,

ui user fixed effects, and τt time fixed effects. Moreover, Nc are the units in the balanced panel of

cohort c, mmax is the number of post-treatment months (5, adoption month is part of post-treatment

period) while mmin represents the number of pre-treatment months (-6). Eventually, yit is the

respective dependent variable, AfterAdoptionit indicates if user i adopted the dashboard in month

t, and ωi as well as λt represent unit and time weights.

To obtain an overall ATT estimate α showing the average treatment effect in the complete

post-treatment period, all 260 (26 adoption months · ten estimation per cohort c) estimates are

aggregated as:
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α =
∑

c N tr
c · αc∑

c N tr
c

(2)

where N tr
c represents the treated users in cohort c.

In the main paper, we differentiate between low- and high-activity users through a median split

based on the total number of commits made by each user in the six months preceding the adoption

of the analytics dashboard. The cutoff point is dynamically recalculated each month, as commit

counts vary across the sample, as shown in Figure A1. The low commit count observed around

September 2021 likely results from missing data, which may have been caused by partial query

failures with the GitHub API experienced by GhArchive during that period.
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Figure A1: Mean Number of Commits per User and Month

D INSTRUMENTAL VARIABLE APPROACH BACKGROUND

The information on GitHub Trending features was obtained through the Internet Archive’s

Wayback Machine (https://archive.org/web/). Detailed information about the analytics dash-
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board’s limited availability is documented in the repository issue discussions (https://github.com

/anuraghazra/github-readme-stats/issues/325, https://github.com/anuraghazra/github-readme-

stats/issues/1406, https://github.com/anuraghazra/github-readme-stats/issues/1471, Retrieved

December 01, 2023). An overview is provided in Table A2. For information on how the exogenous

shocks affected the number of adopters see Figure A2.

Table A2: Exogenous Shocks on Analytics Dashboard Visibility and Availability

Calendar day Exogenoues shock

2020-07-14 Featured on GitHub Trending
2020-07-15 Featured on GitHub Trending
2020-07-16 Featured on GitHub Trending
2020-07-26 Featured on GitHub Trending
2020-07-27 Featured on GitHub Trending
2020-07-28 Featured on GitHub Trending
2020-07-29 Featured on GitHub Trending
2020-07-30 Featured on GitHub Trending
2020-08-07 Limited availability due to technical issues
2020-08-08 Limited availability due to technical issues
2021-04-21 Featured on Catalin’s Tech
2021-08-30 Featured on GitHub Trending
2021-08-31 Featured on GitHub Trending
2021-10-20 Limited availability due to technical issues
2021-10-21 Limited availability due to technical issues
2021-10-22 Limited availability due to technical issues
2021-11-24 Limited availability due to technical issues
2022-01-26 Featured on Sitepoint

Table A3 reports the results of a probit regression of the instrumental variables on the users’

analytics dashboard adoption. All coefficients are significant which documents the instrumental

relevance of the chosen instrumental variables.
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The graph shows the number of daily analytics dashboard adopters (including the ones who removed the
dashboard again). The solid blue lines mark days when the dashboard was featured on GitHub Trending.

The dashed green lines mark days when the dashboard was featured on external blogs. The dotted red
lines mark days when the dashboard had limited availability due to technical issues

Figure A2: Analytics Dashboard Adopters per Day

Table A3: Instrument Relevance

Dependent variable: Adoption (Probit)

(1) Low (2) High

TotalDashboardRepositoryInteractions 0.006*** 0.006***
(0.000) (0.000)

TotalDashboardRepositoryStars −0.011*** −0.011***
(0.000) (0.000)

TotalDashboardRepositoryForks −0.006*** −0.006***
(0.000) (0.000)

DashboardRepositoryFeatured 0.043*** 0.039***
(0.008) (0.008)

DashboardRepositoryDown −0.339*** −0.339***
(0.008) (0.008)

Observations 163,722 166,344
Pseudo R2 0.040 0.040

Note: Activity levels are displayed in the second row. Users are defined
as high-activity if the number of commits during the pre-treatment period is
equal to or above the sample median. Because the instruments only approximate
adoption (not continuous use) we include only the adoption month from the after-
treatment time window. Furthermore, we include only data from the time when
the analytics dashboard repository was already created, i.e., July 09, 2020. The
constant is not displayed. Robust standard errors in parentheses. *** p < 0.01,
** p < 0.05, * p < 0.1.
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E ALTERNATIVE SPECIFICATION

E.1 Identification Strategy

As alternative to the synthDiD employed in the main paper, we repeat our analysis leveraging a two-

way fixed effects specification where we compare the behavior of analytics dashboard adopters with

the behavior of a suitable control group, i.e., a matched sample of non-adopters whom the adopters

are following (Angrist and Pischke, 2008). We deploy coarsened exact matching (CEM) based on

the logged number of commits per month (NumCommits), the logged mean message length per

commit and month (MesLength), the logged number of unique words in commit messages per month

(MesUniqueWords), and the mean sentiment per commit message and month (MesSentiment),

and logged tenure in months (Tenure). CEM has shown to perform better than other prominent

matching methods such as propensity score matching (Bapna et al., 2018; Blackwell et al., 2009;

Wang et al., 2022). We opt for one-on-one matching based on the mahalanobis distance of adopters

and non-adopters. This matching is based on the activity of adopters and non-adopters six months

before the adoption to account for the possibility that the adopters might have changed their

contribution behavior before adopting the analytics dashboard (Wang et al., 2022).

Table A4 displays the summary statistics for the main variables of interest of a random matched

sample and CEM sample of adopters and non-adopters during the matching month, which is six

months before the adoption of the analytics dashboard. Due to the staggered adoption of the

analytics dashboard, a random matched sample, where each adopter is randomly matched to one

non-adopter, serves as a suitable benchmark to assess the performance of CEM. T-tests are used to

evaluate the statistical significance of mean differences between adopters and non-adopters, and the

results show that CEM performs well in constructing a comparable control group of non-adopters.

In the random matched sample, four variables exhibit significant differences between the two
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groups at a 99% level, whereas there is only one significant difference observed in the CEM sample

(MesLength, p < 0.05). Based on this, we conclude that our CEM sample of non-adopters is a

suitable control group for the adopters.

Table A4: Summary Statistics

Adopters Non-adopters

Variable Mean SD Min Max Mean SD Min Max t-statistics

Random matching
NumCommits 0.834 1.421 0.000 8.992 0.739 1.374 0.000 8.694 21.435***
MesLength 3.311 0.717 0.000 9.337 3.546 0.841 0.000 9.082 −52.346***
MesUniqueWords −0.001 0.084 −0.999 0.999 −0.001 0.094 −0.999 0.999 0.594
MesSentiment 3.254 1.398 0.693 9.998 3.448 1.545 0.693 9.547 −23.086***
Tenure 3.234 0.998 0.693 5.198 3.764 1.002 0.693 5.220 −167.875***

CEM
NumCommits 0.758 1.352 0.000 7.330 0.759 1.350 0.000 7.158 −0.099
MesLength 3.298 0.659 0.693 8.530 3.307 0.658 0.693 6.929 −2.257**
MesUniqueWords −0.001 0.051 −0.999 0.999 0.000 0.052 −0.999 0.999 −0.777
MesSentiment 3.207 1.367 0.693 9.038 3.211 1.370 0.693 8.747 −0.500
Tenure 3.253 0.992 0.693 5.198 3.252 1.000 0.693 5.198 0.254

Note: The table displays variable summary statistics for a random (CEM) matched sample during the matching month (i.e., 6
months before adoption). N = 67,082 (63,635) Adopters, 67,082 (63,635) Non-adopters. The variables NumCommits, MesLength,
MesUniqueWords, and Tenure are logged. SD = Standard deviation. The t-statistics are the result of a t-test testing the statistical
significance of mean differences. *** p < 0.01, ** p < 0.05, * p < 0.1.

Furthermore, we leverage the users’ number of commits during the matching month to differ-

entiate low and high-activity developers based on a split along the 60th percentile (see Figure

A3). We choose to analyze data from five months before and after the adoption to investigate the

lasting impact of the analytics dashboard. Additionally, we remove the adoption month as well

as one month before and after to ensure that our results are not driven by short-term effects (cf.,

Foerderer, 2020). Applying the outlined matching procedure, we obtain a sample of 127,270 users

(63,635 adopters and 63,635 non-adopters) with 1,145,430 user-month observations. Eventually, we

normalize the months relative to the adopters’ month of adoption to account for the staggered

adoption of the analytics dashboard.
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This data is based on the complete sample, i.e., 47,594 analytics element adopters (between
2020−07−09 and 2022−06−09) and a random sample of 103,333 users the adopters are following. All of

the users must have been created before the relevant month. This is the data for the first month in
the dataset, i.e. 2020−01−23.

Figure A3: Cumulative Users and Commits

E.2 Results

Our models estimate users’ number of commits, mean commit message length, number of unique

words in commit messages, and mean commit message sentiment per month. To facilitate inter-

pretation and understanding, we use a ordinary least squared (OLS) regressions for all dependent

variables. Our regression specification is

yit = β0 + β1AdoptionixAfterit + β2Tenureit + β3Adopters in networkit + ui + τt + ϵit (3)

where the dependent variable yit denotes user i’s logged number of commits (NumCommits,

H1 in the main paper), logged mean commit message length (MesLength, H2 in the main paper),

logged number of unique words in commit messages (MesUniqueWords, H3 in the main paper),

or mean commit message sentiment (MesSentiment, H4 in the main paper) in calendar month t.

β0 represents the constant of the OLS regression. The variable Adoptioni is a dummy indicating

whether user i is part of the adopter or non-adopter group (1 = adopter group) and Afterit indicates

A8



whether the observation month is part of the pre- or post-adoption period (1 = post-adoption).

Their interaction AdoptionixAfterit is our DiD term. Thus, β1 is our DiD estimator showing how

adopting the analytics dashboard influences the respective dependent variable. With Tenure we

control for user i’s tenure in logged months on GitHub for month t. Adopters in network is our

second control variable and represents the percentage of users in developer i’s network who adopted

the analytics dashboard in month t. By adding this variable we control for potential spillover effects,

i.e., that the adoption of one user affects the behavior of another user, and guarantee that our

results are unbiased even if such spillover effects exist (cf., stable unit treatment values assumption;

Sinclair et al., 2012). Furthermore, the number of commits are highly user- and time-dependent

(Guzman et al., 2014; Kalliamvakou et al., 2016). Therefore, we add user fixed effects ui as well as

time fixed effects τt that capture calendar month effects as well as relative month effects being the

distance between observation and adoption month. ϵit represents the error term. The coefficients

for the variables Adoptioni and Afterit are only present in their interaction because the variables

perfectly correlate with the user or time fixed effects respectively. To adequately test our hypotheses

we run separate regressions for users with initial low and high activity.

Table A5 presents the results of the corresponding regressions. The results from the two

regressions on users’ number of commits are displayed in column 1 and 2. The DiD coefficient

(Adoption x After) is positive and significant (p<0.01) for low and high-activity users indicating

that users commit more after adopting the analytics dashboard. These findings suggest that

adopters with low initial activity commit approximately 27% more after the adoption, while

adopters with high initial activity commit about 16% more. Columns 3 and 4 present the results

of the regressions on the mean commit message length. Both DiD estimators are positive and

significant (p<0.01), indicating that users write longer commit messages after adopting the analytics

dashboard. Specifically, the mean number of characters per message for both groups increases by
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approximately 3% after the adoption of the analytics dashboard. Next, the results in column 5 and

6 display the results of the regressions on the unique words in commit messages. Again, both DiD

coefficients are positive and significant indicating an increase by about 8% and 11%, for low- and

high-activity adopters respectively. Eventually, we examine the impact of adopting the analytics

dashboard on the commit message sentiment. The results of the corresponding OLS regressions

are presented in columns 7 and 8. While the DiD estimator for users with high initial activity is

positive but not statistically significant, the one for users with low initial activity is negative, with

a point estimate of -0.002.

Table A5: Difference-in-Differences

NumCommits MesLength MesUniqueWords MesSentiment

(1) Low (2) High (3) Low (4) High (5) Low (6) High (7) Low (8) High

Adoption x After 0.270*** 0.164*** 0.033*** 0.027*** 0.078*** 0.105***−0.002 0.001
(0.009) (0.013) (0.007) (0.006) (0.015) (0.012) (0.001) (0.001)

Tenure 0.268*** −0.531*** −0.017 0.017 0.086*** −0.089*** −0.002 −0.003*
(0.019) (0.032) (0.015) (0.013) (0.032) (0.030) (0.002) (0.001)

Adopters in network 0.038*** 0.016 0.009 0.017 0.003 0.018 0.000 −0.001
(0.012) (0.025) (0.012) (0.012) (0.024) (0.026) (0.001) (0.002)

User Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Month Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 637,392 380,768 219,756 242,530 220,128 242,804 219,742 242,528
Users 79,674 47,596 63,762 45,814 63,787 45,818 63,756 45,814
Adj. R2 0.037 0.038 0.004 0.003 0.014 0.010 0.000 0.000
Mean Adopters Pre 8.474 33.210 34.289 40.038 49.128 99.554 0.000 −0.001

Note: The dependent variables are displayed in the first row. The means of adopters before for Number of
commits and Commit message length are not logged. Users’ activity level during the matching month according to
a split along the 60th percentile of the number of commits are displayed in the second row. The constants of the
OLS regressions are not displayed. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

The DiD estimators in our main specification vary in magnitude and significance between low-

and high-activity users for all three dependent variables. To assess whether the adoption of the

analytics dashboard has different impacts on users based on their initial activity levels, we follow

the approach of Oberfichtner and Tauchmann (2021), who develop a test to determine whether the

coefficients from two regressions with different subsamples significantly differ.
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This test involves running a single regression using stacked data from the distinct OLS regressions

(building on Wooldridge, 2010), making it compatible with panel data and fixed effects. The test

then compares the outcomes against a chi-squared distribution, allowing one to determine whether

differences in the coefficients are statistically significant. If the test reveals significant differences in

the DiD estimators, this implies that low and high activity users are affected differently from the

analytics dashboard adoption.

Table A6 present the corresponding results. The differences in the DiD coefficients between low

and high activity users in the regressions on number of commits and commit message sentiment are

statistically significant (p < 0.01 and p < 0.1), while there is no significant difference in the DiD

coefficients in the regressions on commit message length and unique words in commit messages.

These findings clearly support our hypotheses H1 (number of code contributions) and H4 (developer

sentiment) postulated in the main paper suggesting that the adoption of the analytics dashboard

exerts a greater effect on users with low initial activity. Specifically, adopters with low initial

activity commit about eleven percentage points more and write more negative commit messages

after adopting the analytics dashboard compared to adopters with high initial activity.

Table A6: Difference-in-Differences Estimator Differences

NumCommits MesLength MesUniqueWords MesSentiment

Adoption x After (Chi2) 47.463*** 0.469 2.002 3.079*

Note: Compared against a Chi2 distribution, the computed values show the statistical
significance of the DiD estimator Adoption x After differences between low and high activity
users (following Oberfichtner and Tauchmann, 2021). *** p < 0.01, ** p < 0.05, * p < 0.1.

Overall, the alternative two-way fixed effects model with a matched sample of adopters and

non-adopters corroborates the findings from the synthDiD and instrumental variable approach

presented the main paper. They suggest that the analytics dashboard adoption positively impacts

the number of commits (supporting H1), the commit message lenth (rejecting H2) and the unique
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words in commit messages (rejecting H3), but low-activity users write more negative commit

messages (partly supporting H4).

F BTM BACKGROUND

The commonly used Latent Dirichlet Allocation (LDA) algorithm for topic modeling does

not perform well when applied to a short text corpus because it relies on word co-occurrences

between messages, which requires longer messages to deliver a good topic model (Mazarura and

de Waal, 2016; Weisser et al., 2022). In contrast, biterm topic modelling (BTM) relies on biterm

co-occurrences across messages, thereby solving the problem of extracting meaningful topics from

texts that consist of only a few words (Yan et al., 2013). Furthermore, BTM has been shown to

outperform other topic modeling approaches applicable to short texts, such as BERTopic (Miyazaki

et al., 2023).

It is reasonable to treat the commit messages of adopters and non-adopters before and after

the adoption as one corpus because, due to the complexity of text data and the stochastic nature

of topic models, there is no one single topic model for a corpus of text. Thus, running a topic

modeling approach with separate corpora (e.g., one topic model for a corpus of commit messages

by adopters before and one after the adoption of the analytics dashboard) to capture topic shifts

over time, might lead to entirely different topic models that are not comparable across corpora

(Furman and Teodoridis, 2020).

Determining the optimal number of topics is a crucial step in every topic modeling process. To

find the best fit, we ran separate models with topic counts ranging from three to ten and selected

the final model with T = 8. This selection was made after carefully evaluating and balancing the

commonly used three key metrics: coherence (maximized), perplexity (minimized), and entropy

(minimized). Table A7 displays the complete metrics for the computed topic models.
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Table A7: BTM Performance with Different Numbers of Topics

T Coherence Perplexity Entropy

3 −639.38 405.22 3.98
4 −663.38 375.04 3.57
5 −658.49 354.01 3.35
6 −654.83 345.10 3.23
7 −670.75 335.40 3.15
8 -649.69 316.56 3.10
9 −660.11 318.70 3.05
10 −669.50 305.34 3.02

Note:
T = Number of Topics. The topic mod-
els are run on the complete corpus of
commit messages by low-activity users.

G SYNTHETIC DID BY TOPICS ALL DEPENDENT VARIABLES

Tables A8, A9, and A10 present the regression results segmented by topic for low-activity users

for the dependent variables not included in the main paper. Tables A9 and A10 offer intriguing

insights into the unexpected positive effects of the analytics dashboard adoption on the commit

message length and the number of unique words in commit messages. Notably, both variables show

the steepest increase for Topic 8, “branch management” (0.141, p < 0.01, and 0.322, p < 0.01).

This suggests that the overall rise in the commit message length and the unique words in

commit messages is likely driven by an increased documentation effort necessitated by the higher

number of commits. Put differently, as the analytics dashboard incentives low-activity developers

to commit more frequently, a greater number of software versions is created. As a result, the

need to organize and track these versions increases, requiring more detailed commit messages to

enable developers to retrospectively monitor their progress. For example, if a developer commits

only once a week, it is relatively easy to remember the implemented changes without extensive

documentation. However, as the number of commits rises, more comprehensive documentation

becomes essential to track progress and fully understand the changes made. Similarly, the need for

branch management increases
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Table A8: Number of Commits Synthetic Difference-in-Differencey by Topics

Core OSS Activities Peripheral OSS Activities

(1) Topic 1 (2) Topic 2 (3) Topic 3 (4) Topic 5 (5) Topic 6 (6) Topic 7 (7) Topic 8

Adoption x After 0.191*** 0.250*** 0.253*** 0.233*** 0.209*** 0.149*** 0.218***
(0.004) (0.005) (0.004) (0.005) (0.004) (0.003) (0.004)

Observations 241,416 241,416 241,416 241,416 241,416 241,416 241,416
Users 20,118 20,118 20,118 20,118 20,118 20,118 20,118
Mean Adopters Pre 2.931 4.318 2.601 8.885 3.156 1.658 2.024

Note: The dependent variable is the logged number of commits separate by topics. The topic identified by Biterm Topic
Modelling is displayed in the top row. Only initially less active users are considered in the regressions. Users are defined as
low-activity if the number of commits during the pre-treatment period is below the sample median. The pre-treatment means
of adopters are presented in their raw form (not logged). Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, *
p < 0.1.

Table A9: Commit Message Length Synthetic Difference-in-Differencey by Topics

Core OSS Activities Peripheral OSS Activities

(1) Topic 1 (2) Topic 2 (3) Topic 3 (4) Topic 5 (5) Topic 6 (6) Topic 7 (7) Topic 8

Adoption x After 0.017 0.023*** 0.102*** 0.048*** −0.024*** 0.049*** 0.141***
(0.011) (0.005) (0.011) (0.003) (0.008) (0.014) (0.016)

Observations 20,016 37,440 16,920 85,032 18,072 8,064 9,720
Users 1,668 3,120 1,410 7,086 1,506 672 810
Mean Adopters Pre 61.284 31.241 44.997 17.995 42.540 56.954 133.787

Note: The dependent variable is the logged commit message length separate by topics. The topic identified by Biterm
Topic Modelling is displayed in the top row. Only initially less active users are considered in the regressions. Users are defined
as low-activity if the number of commits during the pre-treatment period is below the sample median. The pre-treatment
means of adopters are presented in their raw form (not logged). Robust standard errors in parentheses. *** p < 0.01, ** p <
0.05, * p < 0.1.

Table A10: Unique Words in Commit Messages Synthetic Difference-in-Differencey by
Topics

Core OSS Activities Peripheral OSS Activities

(1) Topic 1 (2) Topic 2 (3) Topic 3 (4) Topic 5 (5) Topic 6 (6) Topic 7 (7) Topic 8

Adoption x After 0.157*** 0.151*** 0.235*** 0.208*** 0.183*** 0.201*** 0.322***
(0.017) (0.010) (0.018) (0.007) (0.016) (0.025) (0.021)

Observations 20,016 37,440 16,920 85,032 18,072 8,064 9,720
Users 1,668 3,120 1,410 7,086 1,506 672 810
Mean Adopters Pre 46.579 19.357 25.133 17.624 29.985 25.680 33.000

Note: The dependent variable is the logged number of unique words in commit messages separate by topics. The
topic identified by Biterm Topic Modelling is displayed in the top row. Only initially less active users are considered in
the regressions. Users are defined as low-activity if the number of commits during the pre-treatment period is below the
sample median. The pre-treatment means of adopters are presented in their raw form (not logged). Robust standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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H QUALITATIVE EVIDENCE

To further understand the underlying mechanisms that drive developers’ behavior changes after

adopting the analytics dashboard, we additionally conducted 32 semi-structured interviews with

analytics dashboard adopters. Among these interviews, 16 involved individuals with low initial

activity, while the other 16 were part of the high activity group. The users in the study adopted

the analytics dashboard either in May or June 2022, and the interviews took place between May

and June 2023.

26 developers stated that the analytics dashboard had a positive impact on their contribution

behavior. This does not only encompasses the previously observed higher number of commits but

also a more desirable commit frequency without harming code quality.

”I used to write codes, but don’t push them usually. But nowadays, I try to commit
sincerely and try to write meaningful commits whenever I commit and try to organize
my codes, and everything I try to look like a professional.“ (Developer 19, low initial
activity)

”No, I don’t think it [the quality or complexity of the code] changed that much [after
adopting the analytics dashboard].“ (Developer 4, high initial activity)

Furthermore, twelve developers explained that the analytics dashboard led them to engage in

upward social comparison which impacted their contribution behavior and well-being.

”I’m probably amazed first [when visiting the GitHub profile of a developer with higher
numbers in the analytics dashboard]. [...] Then I kind of kick myself in the butt that
you need to hurry up and learn more and do better stuff. [...] But then those people if
you if you see their projects and their contributions, they are usually contributors and
maintainers of an amount of open source project. And sometimes the code that they
write or the language they use is just so low level.“ (Developer 26, low initial activity)

Eventually, five respondents (three with low and two with high initial activity) stated that

they encountered stress due to the upward social comparison enabled by the analytics dashboard.

Particularly interesting are the experiences of an adopter whose emotional response changed

depending on their life situation. Initially, they were an intern as their main occupation and
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felt stressed when comparing themselves to more active developers on GitHub, but they do not

experience these negative emotions any more because now they work as a full-time employee.

”I think I definitely have worried that [the] dashboard, something that shows raw stats
will show that I may be not as experienced of a developer as other people who’ve been
longer out in the industry. I just graduated about a month ago and so I’ve been working
full time for a month, before that, I was an intern.“ (Developer 4, high initial activity)

This example shows that developers’ emotional response to the upward social comparison

enabled by the analytics dashboard highly depends on their personal situation. Specifically, if one

cares about the comparison, perceives oneself at a disadvantage, and is unsure about their own

abilities, this may result in a higher level of stress.

Overall, the qualitative evidence corroborates and enriches the findings from the quantitative

data, indicating that adopting the analytics dashboard positively affects developers’ number of

commits as well as their professional appearance. However, the analytics dashboard may adversely

impact developers’ well-being, especially those with less experience and higher uncertainty about

their abilities, as they may experience stress induced by excessive upward social comparison.
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