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Abstract

Open-source software (OSS) development is a social phenomenon, centered around connect-
ing, collaborating, and comparing with other developers. To showcase their abilities and track
their performance, developers maintain public user profiles that display detailed information
about their OSS activities. In this paper, we examine how the adoption of an analytics
dashboard that publicly displays performance information influences developers’ contribution
behavior—specifically, the quantity, effort, and diversity of their code contributions—as well
as the developers’ affect. Our empirical strategy is difference-in-differences using granular
data from more than 60,000 GitHub developers over three years. The results indicate that
the adoption of the analytics dashboard has heterogeneous effects on developers’ behavior.
High-activity developers benefit from the quantification and comparison of their work, becom-
ing more active, particularly in collaborative projects. In contrast, low-activity developers
exhibit different patterns. They increase their contributions mainly within the “safe space” of
their own projects, but their commits are often accompanied by more negative messages. We
present suggestive evidence that this increased negativity is linked to stress because it only
occurs during peripheral and bothersome OSS activities, such as dependency handling. Our
results show that public performance information may be a double-edged sword: although it
can drive performance improvements, it may also impose psychological strain on developers.
We discuss implications for theory and practice.

Keywords: analytics dashboard, open-source software, developer, user behavior
Appendix: The appendix is available at https://osf.io/ndy45?view_only=0b2450fa6fdd4d99819
37b8651af0d5b

1 INTRODUCTION

Open-source software (OSS) is valued at eight trillion dollars globally, and organizations that

engage active OSS developers can experience enhanced growth (Hoffmann et al. 2024, Wright

et al. 2024). However, this may come at a cost to individual developers. 45% of OSS developers
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indicate that maintaining OSS increases their level of personal stress (Tidelift 2023). Central to

this phenomenon is the transparent nature of OSS, where the performance of individual developers

is publicly visible. For example, on OSS development platforms like GitHub, the number of code

contributions by more than 100 million OSS developers can be tracked and monitored by anyone.

This issue is subject to intense debate in the OSS community. While some developers enjoy sharing

their activities, others are concerned about the negative impact this transparency can have on

their well-being, including an increased risk of burnout (Chan 2022).1

In this paper, we examine how publicly available performance information can shape social

interactions among OSS developers. OSS development is a highly social phenomenon that revolves

around connecting, collaborating, and comparing between developers. A key component of these

interactions is personalized user profiles, where developers share information about themselves, such

as their work history, project contributions, or personal interests (Marlow et al. 2013). Additionally,

users rely on various extensions to showcase their performance, such as the GitHub Readme Stats

analytics dashboard, a widely adopted user profile extension with more than 100,000 users. This

dashboard visualizes detailed performance information about a user’s activities on their profile,

such as contribution quantity, and ranks developers relative to other GitHub developers using a

letter-grade system.

The effect of the publicly-displayed performance information, such as that provided by the

analytics dashboard, on developers’ contribution behavior is unclear. On the one hand, the improved

visibility of performance information may motivate developers to increase their contributions by

encouraging them to outperform their peers (Chen et al. 2010, Landers et al. 2017). On the other

hand, the comparison with peers may induce stress among some developers, especially when such

comparisons with others are unfavorable (de Vries and Kühne 2015, Lee 2014, Wu et al. 2021). For

example, in a discussion about the GitHub Readme Stats analytics dashboard a user notes “[o]f
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course, almost nobody would like to understand he is not that good compared to others”.2

Prior literature has focused on developers’ motivation to contribute to OSS but does not provide

deeper insights into the effect of public performance information on developers’ contribution

behavior. A large stream of literature has investigated why developers voluntarily contribute to

OSS, emphasizing the importance of social interactions among developers. OSS developers derive

satisfaction from being an integral part of a community, require value and ideology congruence

when contributing to OSS, and are motivated by unique work structures in OSS development,

such as autonomy or self-organization (Daniel et al. 2018, Maruping et al. 2019, Medappa and

Srivastava 2019, von Krogh et al. 2012, Zhang et al. 2013). Furthermore, research indicates that

providing people with performance information in online environments has positive effects, for

example, on the number of contributions (Chen et al. 2010, Dissanayake et al. 2018, Dobrescu et al.

2021, Huang et al. 2019, 2021, Shi et al. 2021). However, much of the existing research focuses

on privately-displayed performance information. The impact of public performance information

may be different because public performance information, in particular in the OSS context, plays a

crucial role in reputation building and facilitating comparison within the community (Dabbish

et al. 2012, Hauff and Gousios 2015). Therefore, we investigate the following research question:

RQ: How does the adoption of an analytics dashboard that publicly displays OSS

developers’ performance influence their contribution behavior and affect?

In this study, contribution behavior refers to the number of developers’ code contributions,

as well as the associated effort and diversity. Because the analytics dashboard facilitates social

comparison among developers, we draw from social comparison theory, which posits that individuals

evaluate their own abilities by comparing themselves to others with greater abilities (Festinger

1954).

Empirically, we address this question using data from 63,135 GitHub developers over three

3



years, with one-sixth of them adopting the GitHub Readme Stats analytics dashboard. Our

empirical strategy employs a difference-in-differences (DiD) approach. To mitigate endogeneity

concerns arising from the voluntary adoption decision, we employ multiple validation strategies.

Most importantly, we use synthetic DiD (synthDiD), a recent methodological advancement that

reweights control units to ensure parallel pre-treatment trends, enabling valid identification in our

context (cf., Arkhangelsky et al. 2021, Berman and Israeli 2022, Yeverechyahu et al. 2024). We

complement this with additional approaches, including an instrumental variable estimation and a

two-way fixed effects DiD using a matched sample of adopters and non-adopters.

Our findings provide robust evidence that adopting the analytics dashboard increases a devel-

oper’s number of code contributions by up to 55%, as well as the associated effort and contribution

diversity. Further analyses reveal that this effect differs between low- and high-activity users.

High-activity users appear to benefit from the comparison with others, leading them to write more

positive documentation in collaborative projects. Additionally, they disproportionately increase

their number of contributions, effort, and diversity in these projects compared to low-activity users.

In contrast, low-activity users primarily adjust their behavior within the “safe space” of their

own projects and write more negative code documentation. We present suggestive evidence that

the increased negativity may be due to stress, as it primarily occurs in response to bothersome,

peripheral OSS activities such as dependency handling.

This study makes three important contributions to the research streams on OSS developers

and performance information on online platforms. First, it extends existing research on the factors

impacting OSS developers’ contribution behavior by examining a previously unexplored factor:

publicly-displayed performance information. Our findings show that developers’ contribution

behavior can be shaped not only by external influences but also by self-imposed interventions.

Second, by applying social comparison theory to the field of OSS development, we highlight how the
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complex social interactions among OSS developers can shape their contribution behavior. Third,

our study finds that publicly-displayed performance information may be a double-edged sword,

improving performance at the expense of potentially negative consequences for some developers.

Therefore, developers and online platforms should carefully consider whether to publicly display

performance information, especially for low-activity users.

2 BACKGROUND

The contribution behavior of OSS developers is a major topic in information systems (IS)

research, investigating why people contribute to OSS and how interventions may impact their

contributions. Our paper adds to this research stream by examining the impact of publicly-displayed

performance information—specifically through an analytics dashboard on OSS developers’ profile

pages—on developers’ contribution behavior and affect.

2.1 OSS Developers’ Contribution Behavior

OSS is characterized by its accessibility, allowing anyone to freely access, modify, and distribute

the software. As a result, it relies heavily on voluntary contributions by OSS developers. Platforms

like GitHub offer the necessary infrastructure for efficient software development (e.g., version control)

and communication among developers. Prior research highlights the role of social interactions within

the OSS community in influencing developers’ contribution behavior, a phenomenon known as

“social coding” (Dabbish et al. 2012). Because OSS development is a concerted effort of many people

who, mostly voluntarily, interact and collaborate to produce software, developers are often driven by

intrinsic motivations. For example, developers are motivated by the unique work structures in OSS,

which offer high levels of autonomy and self-organization (Medappa and Srivastava 2019, Lindberg

et al. 2024). Similarly, values and ideology play a crucial role, as alignment between developers and

their respective communities is an important predictor of developers’ OSS contributions (Daniel

et al. 2018, Maruping et al. 2019). Reputation and status of a user within the community are also
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important elements of social coding on OSS development platforms (Dabbish et al. 2012, Hauff

and Gousios 2015). Comparisons among community members can be influenced by performance

information provided to the users, which may ultimately impact their contribution behavior.

2.2 Online Performance Information

Prior research finds that offering performance information in online environments has positive

effects, for example, on the number of contributions. Table 1 presents an overview of related

empirical studies. For example, Huang et al. (2019) reveal that offering performance information

motivates users of a recipe crowdsourcing platform to contribute more frequently. Notably,

performance feedback appears to be especially motivating for initially lower performing individuals

(Chen et al. 2010, Huang et al. 2019).

Importantly, most existing studies examine the impact of privately-displayed performance

information—information only visible to the user. Only Dissanayake et al. (2018) analyze the

impact of publicly-displayed performance information and find that highly skilled teams exert more

effort when they are close to winning an online innovation tournament. Yet, it is not clear whether

the findings from this study generalize to OSS developers’ contribution behavior in response to

publicly-displayed information. First, Dissanayake et al.’s (2018) research is conducted at the

team-level but team behavior could be inherently different from individual behavior due to the

need for communication and collaboration in a team (Lu et al. 2012). Second, the online innovation

tournament setting is time-bound, meaning that participants’ behavior could be influenced by

the short-term nature of the competition. In contrast, OSS developers are typically exposed to

publicly-displayed performance information over a prolonged period, which may induce different

behavioral outcomes such that initial positive responses may revert when someone is constantly

exposed to the same stimulus (cf., Califf et al. 2020).

Furthermore, prior research on the impact of performance information visibility—whether
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private or public—on individuals’ reactions remains inconclusive, particularly in the OSS context.

The literature suggests that when individuals are exposed to private performance information, they

tend to compare themselves with those who outperform them. Conversely, when faced with public

performance information, they may prefer to compare themselves with peers of similar or lower

performance levels (Buunk and Gibbons 2007, Gibbons et al. 2002). Thus, the reference group for

comparison may depend on the visibility of the performance information. Consequently, a person’s

behavioral response to the comparison might differ, especially since changes in behavior tend to be

more noticeable when the comparison is unfavorable (cf., Chen et al. 2010).

Moreover, standing and reputation are key motivational factors for OSS community members

and publicly-visible performance information alters how peers perceive the focal developer (Dabbish

et al. 2012, Hauff and Gousios 2015, von Krogh et al. 2012). Given the importance of others’

perceptions, public performance metrics may provide additional incentives for users to improve

because it alters others’ perception of the focal user. To our knowledge, no study has examined how

publicly-displayed performance information, such as an analytics dashboard on a developer’s profile

page, affects OSS developers’ contribution behavior. Given the importance of social interactions in

the OSS community, as well as the comparison opportunities enabled by the analytics dashboard,

we draw from social comparison theory. This approach helps us better understand the interplay

between publicly-displayed performance information and user behavior.

3 THEORY AND HYPOTHESES DEVELOPMENT

Social comparison theory posits that individuals have the desire to evaluate themselves to

determine whether they perform well or poorly (Festinger 1954). As objective standards are often

unavailable, individuals evaluate themselves in relation to others. There is abundant research that

supports the notion that individuals tend to choose upward comparison and compare themselves

to those who are slightly more skilled or accomplished (Gerber et al. 2018). There are two main
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reasons for this strategy. First, to find an appropriate comparison group, individuals tend to select

similar peers because such comparisons promise a more accurate self-assessment of their abilities.

Second, upward social comparison is deeply rooted in our culture that values higher performance

(Festinger 1954, White and Lehman 2005).

Prior research identifies social comparison as an important driver of users’ behavior and affect

in the online environment broadly, and in the OSS development field specifically. For example,

adverse social comparison on social media may lead to negative affect as people become envious

(Krasnova et al. 2015). Simultaneously, there is preliminary evidence that adverse social comparison

motivates OSS developers to improve their contributions after benchmarking against other OSS

projects (Lumbard et al. 2024).

In this realm, OSS developers’ contributions take many forms. In our study, we focus on code

contributions because additions or changes to the code are the primary objectives in software

development. Here, we investigate how adopting the analytics dashboard influences developers’

quantity, effort, and diversity of code contributions. Furthermore, we hypothesize how developers’

affect is impacted to assess the sustainability of the intervention with respect to developers’

well-being (cf., Matook et al. 2021).

The analytics dashboard publicly displays performance information about OSS developers’

activities on their user profiles, such as the number of code contributions, and ranks developers

relative to all other GitHub developers using a letter-grade system. This visibility allows adopters

to easily compare their performance with peers, either by observing their rank or inspecting detailed

statistics relative to other adopters, such as collaborators. According to social comparison theory,

we expect adopters to leverage this information to compare themselves to higher performing others,

motivating them to improve their performance by narrowing the gap between themselves and those

to whom they compare themselves (Burtch et al. 2018, Chen et al. 2010, Festinger 1954, Landers
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et al. 2017). Thus, upward social comparison facilitated by the analytics dashboard is expected to

motivate developers to improve their number of contributions.

However, the magnitude of this effect may be contingent on developers’ initial activity levels,

which are known to follow a power law distribution—where a small number of users account for the

majority of contributions (Johnson et al. 2014, Kalliamvakou et al. 2016). While high-activity users

constitute experienced and well-established OSS developers, low-activity users are inexperienced or

occasional contributors. This distinction is important for two reasons. First, low-activity users

have a higher probability of engaging in upward social comparison because they have a larger

pool of higher-performing developers to compare themselves to. Second, explaining personally

adverse social comparison is a known coping mechanism that may diminish the behavioral effect

that follows upward social comparison (Buunk and Gibbons 2007). However, low-activity users

may lack the background knowledge to contextualize or explain other developers’ higher number of

code contributions. For example, they may not recognize that another developer’s greater output

could be due to lower effort per contribution. Experienced developers, by contrast, should be able

to quickly identify and explain such nuances.

Taken together, we expect all developers to increase their number of code contributions due

to heightened motivation stemming from upward social comparison facilitated by the analytics

dashboard, but anticipate this effect to be stronger for low-activity users, as they are more likely

to engage in upward social comparison and may lack coping mechanisms. Thus, we hypothesize:

H1: Developers’ number of code contributions increases after adopting the analytics dashboard.

This effect is stronger for developers with low initial activity.

Moreover, people strive to maximize benefits while minimizing costs. For comparisons on

online platforms, this means that users want to achieve the highest possible rank with minimal

effort, strategiccally allocating their resources (Dissanayake et al. 2018). As software developers’
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OSS platform profiles are increasingly relevant in recruiting processes (Hauff and Gousios 2015),

developers may use the analytics dashboard to transmit a positive image of themselves. In line

with social comparison theory, we therefore expect adopters to allocate their effort on increasing

the total number of code contributions displayed in the analytics dashboard, while reducing the

effort invested in each individual contribution. Following our previous arguments, we assume that

the effort reduction is more pronounced for developers with initially lower activity.

Put differently, our reasoning suggests that developers may act strategically by increasing the

number of contributions, even at the expense of the effort put into a single contribution. In doing

so, they aim to improve the performance image presented by the analytics dashboard, which should

be especially relevant for low-activity users having initially lower performance metrics. Thus, we

hypothesize:

H2: Developers’ effort per code contribution decreases after adopting the analytics dashboard.

This effect is stronger for developers with low initial activity.

The cost-benefit calculations of developers who adopt the analytics dashboard and aim to match

the number of contributions of more active peers at the lowest possible costs may lead not only to a

reduction in effort per contribution but also to a decrease in contribution diversity. Contributions to

OSS take many forms, and given the mostly voluntary nature of OSS development, developers can

choose the type of code contributions they make. Examples include optimizing existing software

code—such as making it more computationally efficient or fixing bugs—adding new features, or

engaging in management-like tasks like reviewing code contributions suggested by other developers

(Hattori and Lanza 2008). Each of these activities requires different skill sets and prior knowledge.

For example, adequately optimizing current code demands a deep understanding of the existing

codebase, while adding new features requires creativity and a comprehensive overview of the entire

software.
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Engaging in a diverse set of activities forces a developer to familiarize themselves with many

aspects of the project and its code, each associated with potentially high initial costs. For instance,

a developer who has focused on adding new features would need to gain detailed knowledge of the

existing code before engaging in optimization tasks like bug fixing. This familiarization consumes

resources that the developer could have allocated toward contributing within their “comfort zone,”

potentially resulting in a higher number of contributions. This effect is likely to be particularly

pronounced for low-activity users who lack experience from other projects, thereby disproportionally

increasing the setup costs associated with more diverse types of contributions.

So, we expect developers to focus on a few development activities they excel at, allowing them to

maximize their efforts in improving the numbers displayed on the analytics dashboard. This pattern

should be especially pronounced among low-activity developers, as they face disproportionately

higher setup costs when engaging in diverse OSS activities. Based on these arguments, we

hypothesize:

H3: Developers’ code contribution diversity decreases after adopting the analytics dashboard.

This effect is stronger for developers with low initial activity.

Lastly, frequent upward social comparisons can have negative effects on developers’ affect when

others are perceived as superior (de Vries and Kühne 2015, Krasnova et al. 2015, Lee 2014, Yue et al.

2022). Stress, in particular, has been identified as a significant problem among OSS developers

(Raman et al. 2020). Califf et al. (2020) conceptualize stress as a process that includes (1) stressors

(e.g., interpersonal expectations) that induce (2) positive or negative psychological responses, which

in turn lead to (3) outcomes in the form of a positive or negative psychological state. The negative

psychological state could be stress, commonly defined as the feeling that arises when an individual

lacks sufficient resources to satisfy external demands (Amirkhan et al. 2018).

While upward social comparison can lead to positive psychological responses and outcomes

12



by motivating individuals to match those perceived as better—for example, by increasing the

code contribution quantity—the initial positive response to a stressor can revert if it is excessively

triggered (Califf et al. 2020). Thus, as developers excessively compare themselves with others due

to the analytics dashboard’s prominent placement on their central profile page, this may lead to

negative outcomes for adopters. This effect may be contingent on a developer’s initial activity level

on the platform; low-activity users are more likely to engage in adverse social comparison and may

lack the knowledge to fully explain discrepancies in performance metrics.

Based on these arguments, we expect rising stress levels among analytics dashboard adopters

due to frequent unfavorable social comparisons. This effect is expected to be stronger for low-

activity users, as they are more likely to engage in upward social comparison and may lack coping

mechanisms. Thus, we hypothesize:

H4: Developers’ stress increases after adopting the analytics dashboard. This effect is stronger

for developers with low initial activity.

4 SETTING

We test our hypotheses in the context of GitHub, the most popular platform for OSS development

with more than 100 million users (GitHub Inc. 2023). On GitHub, software code contributions are

labeled as commits, which are changes to one or multiple files within a project, known as a repository.

Along with commits, developers provide commit messages in which they document the modifications.

This documentation is crucial in OSS development because it facilitates understanding of the code

and tracking of changes over time. Furthermore, GitHub offers social features such as user profiles

and the possibility to follow other users.

This paper exploits the adoption of the GitHub Readme Stats analytics dashboard by many

GitHub developers on their publicly accessible profile pages (Hazra 2020). The dashboard is

depicted in Figure 1. It displays descriptive statistics related to a user’s contributions on GitHub,
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Figure 1: Analytics Dashboard.
Note. Retrieved from https://github.com/anuraghazra/github-readme-stats (October 11, 2022).

such as their number of commits (Total Commits), pull requests (proposed code changes, Total

PRs), and issues (discussion threads, Total Issues). Furthermore, the dashboard documents the

number of stars the adopters’ repositories have received (Total Stars Earned). Users can star a

repository to show appreciation for the work (GitHub Inc. 2022). The dashboard also shows the

unique number of repositories to which the adopter has contributed (Contributed to). Based on

these metrics, a rank is calculated that categorizes the adopter relative to all other GitHub users

using a cumulative distribution function. The ranks range from B+ (top 100%) to S+ (top 1%).

5 METHODOLOGY

5.1 Data

The analytics dashboard was initially launched on July 9, 2020. We identified 137,012 adopters

of the analytics dashboard within a two-year window between July 9, 2020, and July 9, 2022.

Furthermore, we identified the GitHub users whom the adopters were following and selected a

random sample of 300,000 non-adopters from this group of followees. We then collected all public

GitHub activities of these 437,012 users between January 22, 2020, and December 25, 2022, from

GhArchive (for details, see Appendix A).

We operationalize our dependent variables as follows. The code contribution quantity is measured

by a user’s number of commits (NumCommits). We approximate the effort per contribution by

measuring the commit message length (MesLength), calculated as the number of characters per
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commit message3. As outlined, commit messages contain descriptions of the software modifications

and are considered highly important by developers. Thus, if a commit required greater effort, this

is likely reflected in a longer commit message. A developer’s contribution diversity is measured by

the number of unique words in their commit messages (MesUniqueWords). Finally, We exploit

that the messages not only contain information about the commit itself, but also meta-information

in the form of the commit message sentiment (MesSentiment), which has been found to reflect

the developer’s affect (Wu et al. 2021). We determine the sentiment using a BERT (Bidirectional

Encoder Representations from Transformers) model (Devlin et al. 2019) that is fine tuned to the

software engineering domain. The model classifies a commit message sentiment on a scale from

-1 (negative) to 1 (positive). Table 2 presents exemplary negative, neutral, and positive commit

messages. For more details on the BERT model refer to Appendix B.

Table 2: Exemplary Commit Messages

Commit message Sentiment

Tried everything, still haven’t figured it out... −0.999
Still can’t solve :cry: −0.998
Fix total objects if offset is higher than total 0
Merge pull request No. 40 from vikrambombhi/update-uml. update UML to allow
multiple answers

0

Great. Everything seems working. 0.999
Handle parallelize typing issues. And move it to Python 3. Yay! 0.999

Note. The exemplary messages are from March 18, 2020 and are classified by the fine tuned BERT model.
The sentiment score ranges from -1 (negative) to 1 (positive).

Table 3: Summary Statistics

Variable N Mean SD Median Min Max

NumCommits 7,073,237 15.922 69.860 0 0 8,354
MesLength 2,888,879 49.395 133.771 28 0 35,758.364
MesUniqueWords 2,892,877 108.209 345.774 28 0 32,762
MesSentiment 2,888,653 −0.001 0.089 0 −0.999 0.999

Note. The summary statistics displayed here are based on all user-month observations eligible for the
synthDiD. The variables MesLength and MesSentiment are mean values per user and month. The number
of observations varies between the variables because developers may commit without including a message,
or the message may be too short to compute the MesLength, MesUniqueWords, or MesSentiment, which
can lead to missing data.
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Finally, we aggregate the number of commits (count), the commit message length (mean), the

number of unique words in commit messages (count), and the commit message sentiment (mean)

on a monthly level, i.e., 28-day periods relative to the initial analytics dashboard launch on July

9, 2020. This was done to make the analysis computationally feasible and reduce noise in the

data caused by irregular contribution behavior per day and week (cf., Guzman et al. 2014). As a

result, we obtained a panel data set with one observation per user per month. Table 3 displays the

summary statistics of the resulting variables. To account for skewness, we logged the number of

commits, the commit message length, and the number of unique words for further analysis.

5.2 Identification Strategy

We use a DiD approach to compare the behavior of analytics dashboard adopters with that of

non-adopters. Any additional difference in the post-treatment period relative to the pre-treatment

period represents the treatment effect—that is, the effect of adopting the analytics dashboard

(Angrist and Pischke 2008). Traditional DiD analysis imposes a strict parallel pre-treatment trend

assumption, meaning the behavior of treated (adopters) and control (non-adopters) users must

follow common trends before the treatment. In our case, the challenge lies in the voluntary nature

of the adoption decision, which introduces the risk of endogeneity. Analytics dashboard adopters

may change their behavior before adopting. For example, a developer seeking for a new job might

prove their skills by contributing more on GitHub, which simultaneously increases the probability

of becoming aware of and adopting the dashboard to showcase their increased contributions. This

scenario complicates the clear identification of the actual effect of the analytics dashboard adoption

on developers’ contribution behavior because the motives of adopters may diverge from those of

non-adopters.

To address this issue, we deploy synthDiD, a recent methodological advancement that allows

for valid identification of treatment effects in settings where the parallel pre-treatment trend
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assumption may be violated (Arkhangelsky et al. 2021). SynthDiD combines DiD and the synthetic

control method by reweighting control units to achieve parallel pre-treatment trends. Consequently,

any additional post-treatment deviation can be validly attributed to the treatment itself. However,

the standard synthDiD approach does not account for the staggered adoption of the treatment,

which is present in our setting that encompasses 38 months (January 23, 2020 to December 21,

2022) with users adopting the dashboard during any of 26 months (July 9, 2020 to July 6, 2022).

Therefore, we draw on Berman and Israeli (2022), who adapted synthDiD to handle staggered

adoption. The authors developed this approach for a setting very similar to ours, allowing them to

estimate the monetary benefits companies achieve after voluntarily adopting a descriptive dashboard.

Their data comprised a company-month panel where some companies adopted the dashboard in

any given month, requiring a DiD estimator capable of achieving parallel pre-treatment trends in a

setting of voluntary staggered treatment. In Berman and Israeli (2022), this is accomplished by

computing a separate synthDiD for every possible adoption period and aggregating the results to

obtain an overall estimate. Each synthDiD encompasses six pre- and six post-treatment periods,

with the adoption month being part of the post-treatment period.

The synthDiD modified for staggered adoption is computationally intensive because the algo-

rithm must determine the optimal weights for the control units for every adoption period, which

becomes increasingly complex for a larger number of units. To make this computationally feasible

with our data encompassing 437,012 users, we adapted Berman and Israeli’s approach. Specifically,

our model did not converge when using all non-adopters as control units. Therefore, for every

adoption month, we randomly selected a sample of non-adopters equal to five times the number of

adopters in that adoption month. We ran the synthDiD for this adoption period with all relevant

adopters as treatment group and the sampled non-adopters as control group. To avoid bias from

the random selection of non-adopters, we repeated the process ten times, each time with another
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random sample of non-adopters.4 We proceeded by running this analysis for every adoption month

and aggregated the results following Berman and Israeli.

Furthermore, to differentiate between low- and high-activity users, we performed a median split

based on the adopters’ total number of commits in the pre-treatment period. Since the number

of commits is not uniform throughout our observation period, the cutoff point is dynamically

calculated for each adoption month (for details see Appendix C). Eventually, we adhered to the

time frame proposed by Berman and Israeli (2022) and analyze data from six months before and

after the adoption (including the adoption month) to investigate the lasting impact of the analytics

dashboard. The approach is summarized in Figure 2.

Figure 2: Modified Synthetic Difference-in-Differences Approach (based on
Berman and Israeli 2022)

The following equation displays our regression specification in a simplified linear version (for

the complete one refer to Appendix C):

yit = β0 + β1AdoptionixAfterit + ui + τt + ϵit
(1)

where the dependent variable yit denotes user i’s logged number of commits (NumCommits,

number of code contributions, H1), logged mean commit message length (MesLength, effort per

code contribution, H2), logged number of unique words in commit messages (MesUniqueWords,

code contribution diversity, H3), or mean commit message sentiment (MesSentiment, developer
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stress, H4) in calendar month t. β0 represents the constant of the regression. The variable

Adoptioni is a dummy indicating whether user i eventually adopts the dashboard (1 = adopter

group) and Afterit indicates whether the observation month is part of the pre- or post-adoption

period (1 = post-adoption). The interaction AdoptionixAfterit is our DiD term. Thus, β1 is our

DiD estimator showing how adopting the analytics dashboard influences the respective dependent

variable. Eventually, the number of commits are highly user- and time-dependent (Guzman et al.

2014, Kalliamvakou et al. 2016). Therefore, our specification accounts for user and time fixed

effects, ui and τt. ϵit represents the error term.

6 RESULTS

6.1 Main Results

Table 4 presents the regression results split by low- and high-activity users. Columns 1 and 2

show the effect of adoption on users’ number of commits that we hypothesized to increase especially

for low-activity users (H1). The DiD coefficient (Adoption x After) is positive and significant (p <

0.01) for both low- and high-activity users, indicating that both groups commit more after adopting

the analytics dashboard. The synthDiD coefficients can be interpreted similarly to results from

ordinary least squares (OLS) regressions. Since our dependent variable is logged, the coefficients

roughly represent percentage changes. These findings suggest that adopters with low initial activity

commit approximately 55% more after adoption, while adopters with high initial activity commit

about 25% more. These findings are in line with our first hypothesis.

Columns 3 and 4 present the regression results of the analytics dashboard adoption on the

mean commit message length. We anticipated this variable to decrease (H2) but contrary to our

expectation both DiD estimators are positive and significant (p < 0.01), indicating that users write

longer commit messages after adopting the analytics dashboard. Specifically, the mean number

of characters for adopters with low initial activity increases by approximately 5%, while for high
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activity users it increases by about 2% per message.

Next, we examine the impact of adopting the analytics dashboard on the unique number of

words in the users’ commit messages. The results of the corresponding synthDiD regressions are

presented in columns 5 and 6. Again, we hypothesized a negative effect (H3), however, both DiD

coefficients are positive and significant (p < 0.01) but they vary greatly in magnitude. Users with

low initial activity increase the number of unique words by about 19%, whereas high-activity users

show an increase of roughly 2%.

The effect on the commit message sentiment is presented in the columns 7 and 8. Here, we

expected a negative treatment effect mirroring increased stress, in particular for low-activity

developers (H4). While the DiD estimator for users with high initial activity is not statistically

significant, the estimator for low-activity users is negative and significant, with a point estimate

of -0.001 (p < 0.01). This indicates that low-activity users write more negative commit messages

after adopting the analytics dashboard partially supporting our fourth hypothesis.

Table 4: Synthetic Difference-in-Differences

NumCommits MesLength MesUniqueWords MesSentiment

(1) Low (2) High (3) Low (4) High (5) Low (6) High (7) Low (8) High

Adoption x After 0.550*** 0.245*** 0.051*** 0.017*** 0.193*** 0.021*** −0.001*** 0.000
(0.004) (0.005) (0.002) (0.002) (0.005) (0.004) (0.000) (0.000)

Observations 376,704 380,916 241,416 242,424 245,520 247,032 241,416 242,424
Users 31,392 31,743 20,118 20,202 20,460 20,586 20,118 20,202
Mean Adopters Pre 1.762 39.281 38.023 57.710 61.867 308.500 0.000 −0.002

Note. The dependent variables are displayed in the first row. Activity levels are displayed in the second row. Users
are defined as high-activity if the number of commits during the pre-treatment period is equal to or above the
sample median. The pre-treatment means of adopters for NumCommits, MesLength, and MesUniqueWords are
presented in their raw form (not logged). The number of users and observations varies between models because
synthDiD requires a balanced panel. Developers may commit without including a message, or the message may be
too short to compute the MesLength, MesUniqueWords, or MesSentiment, which can lead to missing data. Robust
standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Figure 3 plots the dynamic treatment effect. Specifically, the plots show the point estimates

and 95% confidence intervals (CI) of the regression coefficient Adoption x After for each time

period around the adoption month. For all specifications, synthDiD achieves a very good pre-
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treatment fit between adopters and non-adopters, evidenced by the few and barely significant

treatment coefficients in the pre-treatment periods. Conversely, significant treatment effects in the

post-treatment periods, consistent with the aggregated effects in Table 4, are visible.
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Figure 3: Synthetic Difference-in-Differences Event Studies
Note. The dependent variables are displayed in the first row. Activity levels are displayed in the second row. Users
are defined as high-activity if the number of commits during the pre-treatment period is equal to or above the
sample median.

First, the number of commits by adopters sharply increases in the treatment month, with the

effect decaying over time for both low- and high-activity users. However, while there is a positive

and significant treatment effect for low-activity users throughout all post-treatment periods, a

slightly negative and significant treatment coefficient is observed in the last post-treatment period

for high activity users. Second, the analytics dashboard adoption shows a positive effect on

commit message length for both groups, which remains constant and significant throughout the

post-treatment periods. Third, the event study plots for the number of unique words show a similar
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pattern to that of the number of commits. There is a sharp increase in the number of unique words

during the first adoption month, which decays over time and even turns negative during the last

three post-treatment months for high activity users. Fourth, for commit message sentiment, we

observe patterns that align with the aggregated regression results reported in Table 4: low-activity

users write significantly more negative commit messages in four out of six post-treatment months,

while the results are mixed for high-activity users, resulting in an insignificant overall effect.

6.2 Instrumental Variable Approach

As previously outlined, our data is susceptible to endogeneity issues, primarily stemming from

potential simultaneity and omitted variable biases. Simultaneity bias arises from the reciprocal

influence between the dependent and independent variable. Users who actively contribute on

GitHub are more likely to become aware of and adopt the analytics dashboard. Consequently, there

is a correlation between a user’s number of contributions and the decision to adopt the analytics

dashboard. Additionally, omitted variables—unobservable in our analysis—may also influence both

adoption and contribution behavior. For instance, factors such as job-seeking, which may motivate

OSS developers’ to showcase their skills by contributing more on GitHub, could affect both their

contribution behavior and their likelihood of adopting the dashboard.

To address these concerns, we employ an instrumental variable (IV) approach to account for the

potential endogeneity of analytics dashboard adoption. This approach uses IVs that are correlated

with the regressor (i.e., analytics dashboard adoption), but not with other confounding factors that

could impact our dependent variables (e.g., increased motivation to use GitHub). We instrument

the adoption of the analytics dashboard with the users’ exposure to it, i.e., the probability that

OSS developers become aware of the dashboard, thereby increasing the likelihood of adoption. This

exposure comprises two components. First, the general attention the analytics dashboard receives

on GitHub affects a user’s likelihood of discovering it, independent of their own contribution
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behavior. We measure this attention using monthly number of interactions with the analytics

dashboard repository, such as comments, commits, forks (copies of the repository), and stars.

Second, we leverage exogenous shocks that impact the visibility of the dashboard. For example,

the analytics dashboard was occasionally featured on GitHub Trending, a daily list of popular

repositories, and on various news websites and blogs. Conversely, there were periods when the

dashboard was temporarily unavailable due to technical issues, reducing its visibility on adopters’

profiles. We quantify the monthly impact of these shocks by calculating the number of affected

days per month. These two types of IVs satisfy the requirements of exogeneity and relevance,

making them suitable instruments for estimating the impact of the dashboard adoption despite

the risk of simultaneity and omitted variable biases. Appendix D provides more details on our IV

approach, outlining the exogenous shocks and their instrumental relevance.

We leverage these variables in IV regressions to accurately estimate the effect of analytics

dashboard adoption on our dependent variables. Our analysis covers data from the two-year period

following the creation of the analytics dashboard repository on July 9, 2020. We consider only the

time period when the analytics dashboard was available to ensure that the IVs are measurable.

Additionally, we restrict our sample to adopters with complete observations from six months prior

to their adoption up to the month of adoption. This limitation is necessary because the IVs only

instrument the adoption event, not the continuous use of the dashboard. We also control for user,

relative month, and calendar month fixed effects. Our analysis includes 55,011 dashboard adopters.

Because this analysis focuses exclusively on adopters of the analytics dashboard, the primary

variable of interest is After (Instrumented), a dummy equal to one in the user’s adoption month,

which is instrumented by the variables described earlier. The coefficients associated with this

variable provide insights into the impact of adopting the analytics dashboard on user behavior in

the adoption month while accounting for the potential endogeneity bias.
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The results of our analysis are reported in Table 5. The coefficients show the same direction

and significance as in our main specification. Specifically, we find a positive impact on number of

commits, commit message length, and number of unique words, as well as a negative impact on

the commit message sentiment of low-activity users (columns 1-7, p < 0.01). The effect on commit

message sentiment of high-activity users is not statistically significant (column 8). The magnitudes

of the treatment effects are larger than those using our synthDiD specification, as the IV approach

only estimates the treatment effect during the adoption month, while our synthDiD estimates the

cumulative effect over six months post-adoption.

Table 5: Instrumental Variable Regression

NumCommits MesLength MesUniqueWords MesSentiment

(1) Low (2) High (3) Low (4) High (5) Low (6) High (7) Low (8) High

After (Instrumented) 1.685*** 1.427*** 0.083*** 0.102*** 0.806*** 0.533*** −0.005*** −0.001
(0.016) (0.023) (0.012) (0.008) (0.020) (0.017) (0.002) (0.001)

Observations 163,722 166,344 55,023 130,437 55,100 130,780 55,023 130,429
Users 27,287 27,724 24,339 27,687 24,361 27,693 24,339 27,684
Note. The dependent variables are displayed in the first row. Activity levels are displayed in the second row. Users
are defined as high-activity if the number of commits during the pre-treatment period is equal to or above the
sample median. The adoption is instrumented by the number of interactions, forks, and stars of the analytics
dashboard repository, as well as the number of days it was featured or down. The number of users and observations
vary between the models because due to missing values. Developers can commit without a commit message or the
latter may be too short to compute the MesLength, the of MesUniqueWords, or the MesSentiment partly leading to
missing observations. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

6.3 Additional Robustness Checks

We conduct several robustness checks. Most importantly, we estimate the treatment effect

using a two-way fixed effects model on a matched sample of adopters and non-adopters accounting

for user and time fixed effects. There, we formally test whether the DiD estimators in the

regressions between low- and high-activity users significantly vary leveraging an approach outlined

by Oberfichtner and Tauchmann (2021). The results from these analyses corroborate the findings

from our synthDiD and instrumental variable specification (see Appendix E).

To conclude, our findings mostly support H1 (number of code contributions) and H4 (developer

stress), indicating that the adoption of the analytics dashboard has a stronger effect on users with
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low initial activity. Specifically, low-activity adopters commit about 30 percentage points more

and write more negative commit messages after adoption, compared to high-activity adopters.

Contrary to expectations, we reject H2 (effort per code contribution) and H3 (code contribution

diversity), as the adoption unexpectedly leads to longer commit message and a higher number of

unique words. These effects are stronger for low-activity users, suggesting they invest more effort

and show greater diversity in their contributions than high-activity users. We explore these effects

further through additional analyses based on social comparison theory.

6.4 Additional Analyses

We argue that the adoption of the analytics dashboard enables social comparison for adopters.

We suspect that upward social comparison is driving the change in developers’ contribution behavior.

Furthermore, we argue that this effect is stronger for low-activity users, who may lack the experience

to cope with adverse comparisons. By contrast, high-activity developers may be better equipped

to navigate the OSS environment.

OSS development on GitHub occurs across many different repositories, each is owned by a

distinct user. The repository owner plays a central role in managing the repository, which influences

how contributors interact with and perceive the environment. For example, prior research has shown

that the productivity of external contributors increases when repository owners react positively

and provide timely feedback (Smirnova et al. 2022). When users contribute to repositories they

own, they operate in a familiar environment, in which they are likely to feel safe. Conversely,

contributing to a repository owned by another user may expose developers to less familiar, and

potentially less comfortable, environments. To explore this dynamic, we analyze the effect of the

analytics dashboard adoption on contribution behavior, distinguishing between contributions to

own versus others’ repositories.

We repeat our main analyses, but compute all dependent variables separately, conditional on
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whether a commit’s target repository is owned by the contributing or another user. Panel A in

Table 6 reports the results for low-activity users. The regression coefficients align with the direction

and significance of our main results. Interestingly, the effect is stronger for contributions to users’

own repositories, especially regarding the number of commits, commit message length, and number

of unique words. For example, after the adoption, users increase the number of unique words by

about 19% for commits to their own repositories, but only by about 5% for commits to others’

repositories. The commit message sentiment decreases regardless of repository ownership.

Table 6: Synthetic Difference-in-Differences by Target Repository

NumCommits MesLength MesUniqueWords MesSentiment

(1) Own (2) Other (3) Own (4) Other (5) Own (6) Other (7) Own (8) Other

Panel A. Low-Activity Users

Adoption x After 0.526*** 0.077*** 0.044*** 0.026*** 0.188*** 0.052*** −0.001*** −0.001**
(0.004) (0.002) (0.003) (0.006) (0.006) (0.011) (0.000) (0.001)

Observations 376,704 376,704 184,608 36,936 187,776 37,368 184,608 36,936
Users 31,392 31,392 15,384 3,078 15,648 3,114 15,384 3,078
Mean Adopters Pre 1.596 0.166 35.892 64.428 54.323 120.616 0.001 −0.005

Panel B. High-Activity Users

Adoption x After 0.236*** 0.096*** 0.019*** 0.011* 0.017*** 0.045*** 0.000** 0.002***
(0.004) (0.003) (0.003) (0.006) (0.005) (0.011) (0.000) (0.000)

Observations 380,916 380,916 185,760 38,016 189,360 38,376 185,760 38,016
Users 31,743 31,743 15,480 3,168 15,780 3,198 15,480 3,168
Mean Adopters Pre 29.355 9.926 53.974 85.315 255.577 444.083 −0.001 −0.007
Note. The dependent variables are displayed in the first row. The type of repository, whether it is owned by the
committing or another user is displayed in the second row. Users are defined as high-activity if the number of
commits during the pre-treatment period is equal to or above the sample median. The means of adopters before for
number of commits, commit message length, and unique words in commit messages are not logged. The number of
users and observations vary between the models because synthDiD requires a balanced panel. Developers can
commit without a commit message or the latter may be too short to compute the commit message length, the of
unique words in commit messages, or the commit message sentiment partly leading to missing observations and the
entire removal of the respective user. Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Panel B in Table 6 presents the results for high-activity users, revealing a different pattern

compared to low-activity users. While the treatment effect on the number of commits and commit

message length is higher in self-owned repositories, there is a sharper increase in the number of

unique words and a visibly positive and significant treatment effect on commit message sentiment

in contributions to others’ repositories.
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These findings suggest that the dashboard adoption incentivizes low-activity developers to

change their contribution behavior, particularly in their own repositories, while this pattern is

less pronounced for more experienced high-activity developers. Low-activity users show greater

contribution diversity in their own repositories. In contrast, high-activity users contribute dispropor-

tionately more diverse content in others’ repositories. This could be because low-activity users—still

experimenting with new types of contributions—feel more comfortable in the safe space of their

own repositories, while high-activity users are confident enough to contribute more diverse content

directly to others’ projects. This aligns with our theoretical argument that low-activity users

are less experienced and confident in their OSS development skills, potentially lacking important

coping mechanisms when confronted with social comparison enabled by the analytics dashboard.

In line with this explanation, high-activity users write more positive commit messages in others’

repositories after adoption, possibly indicating that they enjoy the quantification and comparison

of their development activities. In contrast, low-activity users tend to write more negative commit

messages across all repositories, indicating that the analytics dashboard may have adverse effects

on them. While the positive impact for high-activity users aligns with existing research on

analytics dashboards (e.g., Berman and Israeli 2022), the negative impact on low-activity users

is an important aspect. Recent research has only started to consider these potential costs for

analytics users (Wang et al. 2024). Therefore, our focus now shifts to understanding the underlying

mechanisms that drive the more negative commit message sentiment among less active users.

6.5 Underlying Mechanism

We hypothesized that adopting the analytics dashboard increases developers’ stress, with this

effect being more pronounced among initially less active developers. Specifically, we interpret the

increasingly negative sentiment of low-activity developers an indicator of stress (Wu et al. 2021).

To better understand whether more negative commit messages indeed reflect stress, we applied
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topic modeling to analyze the content of commit messages from less active developers. Because

commit messages are typically brief and focused on a single topic, we used Biterm Topic Modeling

(BTM) designed for extracting topics from short texts (Yan et al. 2013). BTM has been shown to

outperform other topic modeling approaches designed for short texts, such as BERTopic (Miyazaki

et al. 2023). More details on our topic modelling approach can be found in Appendix F.

We extracted all commit messages from low-activity users and applied BTM to this corpus.

Table 7 presents the results, categorizing the commit messages into eight distinct topics. For

better interpretability, we manually named and grouped these topics based on the most frequent

words, bigrams, and representative commit messages. The identified topics include four core OSS

development activities: bug fixing (topic 1), feature adding (topic 2), code maintenance (i.e.,

improving working code, topic 3), and testing (topic 4). Four topics encompass peripheral OSS

development activities not directly related to coding: version control (i.e., managing different

software versions, topic 5), style modifications (e.g., updating the accompanying documentation,

topic 6), dependency handling (i.e., ensuring compatibility with changes in underlying packages,

topic 7), and branch management (i.e., integrating different versions of the code, topic 8). Next,

we calculated the mean commit message sentiment for low-activity users at the user-month-topic

level (as opposed to the user-month level used in our main analysis) and ran the same synthDiD

analyses as in our main specification, but separately by topic. We were unable to analyze the

sentiment for testing (topic 4) due to insufficient complete observations required by synthDiD.

The results of this analysis are presented in Table 8. The DiD estimators show no significant

effects on users’ commit messages related to bug fixing (topic 1) and feature adding (topic 2), but a

positive and significant effect for code maintenance messages (topic 3, p<0.01). Thus, the adoption

of the analytics dashboard appears to have a neutral to positive impact on commit messages related

to core OSS development activities. However, we observe consistently negative DiD estimators for
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Table 7: Topics in Low-Activity Users’ Commit Messages

ID Name Commits Sentiment Five most frequent words

Core OSS activities

1 Bug fixing 2,023,121 0.011 fix use add chang test
2 Feature adding 1,930,339 0.010 add ad file creat feat
3 Code maintenance 1,746,343 −0.048 fix test add doc chore
4 Testing 79,860 0.009 test ad fix function stage

Peripheral OSS activities

5 Version control 2,948,944 0.006 de dev commit revert date
6 Style modification 1,389,900 0.010 fix add ad page style
7 Dependency handling 1,111,673 0.003 version use build depend add
8 Branch management 1,085,000 −0.001 bump request pull branch commit

Note. The table displays the top words per topic as determined by the biterm topic model applied to all
commit messages of low activity users considered in the main specification (N = 12,315,180). Topic names
are manually assigned based on the most frequent words, bigrams, and exemplary commit messages for
each topic. The optimal number of topics (k) is determined through an analysis of associated perplexity
and coherence scores for biterm topic models with k = [3,10]. Sentiment is the mean sentiment of all
commit messages dealing with the topic.

peripheral OSS development activities. Specifically, after adopting the analytics dashboard less

active users write significantly more negative commit messages related to version control (topic 5,

p<0.01), style modification (topic 6, p<0.01), and dependency handling (topic 7, p<0.01).

Table 8: Commit Message Sentiment Synthetic Difference-in-Differences by
Topics

Core OSS activities Peripheral OSS activities

(1) Topic 1 (2) Topic 2 (3) Topic 3 (4) Topic 5 (5) Topic 6 (6) Topic 7 (7) Topic 8

Adoption x After 0.000 0.000 0.022*** −0.002*** −0.010*** −0.016*** −0.001
(0.002) (0.001) (0.003) (0.000) (0.002) (0.004) (0.001)

Observations 20,016 37,440 16,920 85,032 18,072 8,064 9,720
Users 1,668 3,120 1,410 7,086 1,506 672 810
Mean adopters pre 0.009 0.008 −0.066 0.005 0.014 0.003 0.000
Note. The dependent variable is the commit message sentiment separate by topics. The topic identified by Biterm
Topic Modelling is displayed in the top row. Only initially less active users are considered in the regressions. Users
are defined as low-activity if the number of commits during the pre-treatment period is below the sample median.
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Stress is known to manifest in behavioral changes, with stressed individuals tending to be more

impatient and negative (Amirkhan et al. 2018, Lunney 2006). Against this backdrop, our findings

provide suggestive evidence that the increase in negativity among initially less active developers

may indeed be attributed to stress, as these developers may feel that peripheral development
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activities distract them from core activities, such as improving their coding skills.

There are two competing mechanisms that could equally explain the observed decrease of the

commit message sentiment. First, after adopting the analytics dashboard, the nature of commits

made by low-activity users may shift, leading them to work on topics that inherently involve more

negative commit messages (e.g., code maintenance, cf., Table 7). Second, users may increasingly

commit intermediate steps during their code development process, where the software is not yet

fully functional. This could result in more negative phrasing in the associated code documentation.

To investigate these possibilities, we ran regressions segmented by topic across all dependent

variables. The results are presented in Appendix G. The analysis reveals a consistent increase

in the number of commits across all topics, suggesting that users do not significantly shift their

contribution behavior after the adoption of the analytics dashboard. Furthermore, this finding

suggests that a rise in intermediate commits is not the primary reason for the decrease in commit

message sentiment. If intermediate commits were the driving mechanism, we would expect little

to no increase in the number of commits related to peripheral OSS activities, such as updating

software documentation. These tasks generally do not involve intermediate steps prone to failure,

which could lead to more negative documentation. Instead, they typically reflect a continuous

progression of work.

Based on these results, we conclude that negative commit messages among low-activity devel-

opers are indeed driven by increased stress. This conclusion is further supported by additional

qualitative evidence. We conducted interviews with 32 adopters of the analytics dashboard, includ-

ing 16 low-activity users. Insights from these interviews corroborate and enrich our interpretation.

For example, one respondent, who initially adopted the dashboard as an intern, reported feeling

stressed when comparing themselves to more active GitHub developers. However, after transitioning

to a professional developer role and gaining confidence in their skills, they no longer experienced
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negative emotions from such comparisons. Further details are provided in Appendix H.

7 DISCUSSION

OSS developers’ profile pages and the information users choose to display shape social inter-

actions, influencing both their contribution behavior and affect. Our study is among the first

to examine this issue. We analyze archival data from 63,135 GitHub developers, one-sixth of

whom adopted the GitHub Readme Stats analytics dashboard, which publicly displays performance

information. Using synthDiD and several robustness checks, our analysis provides evidence that

the analytics dashboard positively impacts the number of contributions, contribution diversity,

and effort. However, this effect differs between low- and high-activity users. High-activity users

appear to benefit from the enabled comparison as they disproportionately alter their behavior in

other users’ projects when compared to low-activity users. This has two major implications for

both developers and the OSS community. First, increased engagement with other projects allows

high-activity developers to collaborate more closely with others. This not only helps them further

expand their knowledge and experience by learning from fellow developers, but also enables them

to enjoy the rewarding experience of close collaboration and exchange in OSS development. Second,

the OSS community benefits from the involvement of these high-activity developers, who contribute

their valuable resources and expertise to joint projects, strengthening the community that heavily

builds on collaborative efforts, as a whole. Conversely, low-activity users primarily adjust their

contribution behavior within the “safe space” of their own projects. Furthermore, empirical evidence

suggests that initially less active developers write more negative code documentation after adopting

the analytics dashboard. An analysis of granular event data provides suggestive evidence that this

increase in negativity could be driven by stress among less active developers. Overall, the adoption

of the analytics dashboard may widen the gap between low- and high-activity developers, both

in terms of coding skills and their social engagement in the community, which could also affect
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the satisfaction they derive from it. Additionally, the OSS community as a whole may fail to fully

harness the potentially vital contributions of initially low-activity developers to OSS projects.

Our study makes two important contributions to research on OSS developers’ contribution

behavior. First, prior research has focused on developers’ motivation to contribute to OSS, such as

identifying social motivators like being an integral part of the community (von Krogh et al. 2012).

This shows that the social composition plays a central role in OSS development, also coined “social

coding” (Dabbish et al. 2012). We extend this understanding by highlighting the competitive

dynamics of social coding, where developers strive to outperform their peers. This competitive

drive can be activated by “self-imposed” interventions, such as making performance information

publicly visible on prominent spaces like profile pages. Second, while existing studies emphasize the

positive aspects of OSS development—such as skill acquisition—there is growing concern about the

potential downsides, particularly regarding developers’ mental well-being (Tidelift 2023). Building

on social comparison theory, we empirically show that upward social comparison can lead to stress,

particularly among less active developers. This finding underscores the need to prioritize mental

well-being of individual developers and to account for potential heterogeneity among them as an

important aspect in future OSS research.

We also contribute to the research on how individuals respond to performance information

on online platforms. Previous studies have focused on privately-visible performance information,

which often led to positive outcomes such as increased contributions and effort (e.g., Dobrescu

et al. 2021, Huang et al. 2019). However, publicly-visible performance information may elicit

different responses. Since public information on the platform can act as a performance signal to

others, users may feel increased pressure to portray themselves favorable. To our knowledge, our

study is the first to empirically examine how public performance information affects individual

behavior, revealing potential negative consequences for some users—namely, increased stress. This

32



suggests that future research should not only focus on instrumental outcomes like the number

of contributions or effort but also on the broader implications of publicly-visible performance

information. Specifically, future studies in the field should balance attention between the individual

user experience and the overall welfare of the community. These two perspectives may interact in

complex ways. For instance, early-stage developers who experience stress from constant negative

social comparison may temporarily increase their contributions but drop out of the community in

the long term. Subsequent research could explore strategies for OSS platforms and communities to

recognize the unique contributions of each member, regardless of their background.

Finally, our findings contribute to the literature on the effects of analytics. Analytics have

become an integral part of everyday life, influencing business decisions and even leisure activities,

for example, by tracking workout performance (Berman and Israeli 2022, Bojd et al. 2022). Previous

research has demonstrated that analytics can drive performance gains, yielding monetary benefits for

organizations and improved workout outcomes for individuals (Berman and Israeli 2022, Müller et al.

2018, Bojd et al. 2022). Our study corroborates these findings at the individual level, showing that

analytics-enabled comparisons motivate individuals to exert greater effort. However, recent research

also points to potential negative effects of analytics for consumers, such as higher prices when sellers

in high-demand markets leverage analytics for pricing strategies (Wang et al. 2024). Our research

extends this narrative by showing that negative effects can also occur at the user level, particularly

by widening the gap between low- and high-activity users and increasing stress for low-activity

individuals. Taken together, these insights suggest that future research investigating the effects

of analytics should adopt a broader conceptualization of affected stakeholders. Specifically, the

findings highlight that not only analytics-adopting organizations are impacted, but also individuals

and others they interact with.

Our study has limitations that future research should address. The empirical analysis relies

33



on available archival data from GitHub, which lacks detailed information on the quality of code

contributions or developers’ professional backgrounds. Future research could delve into these

aspects through field experiments, offering richer insights into the analytics impact on developers

and their contributions. Specifically, it might be possible to obtain data on developers’ professional

backgrounds and current situations, such as job searches or the relevance of OSS development in

their daily work. Additionally, researchers could approximate the quality of code contributions

through more in-depth analysis of developer activity and potential spillover effects of analytics

adoption on their networks. Importantly, field experiments would enable developers to engage in

real-world settings, providing a more accurate reflection of social interactions and comparisons

that are an integral part of OSS development.

Finally, our research has implications for OSS platforms and developers. By enabling social

comparison, OSS platforms can incentivize developers to contribute more, with greater effort and

diversity. For platforms or developers aiming to increase code contributions, implementing an

artifact like the analytics dashboard could be a promising low-cost approach. The benefits of

the analytics dashboard extend beyond its direct users. Developers who do not actively use the

dashboard may also gain advantages, as the increased effort and diversity in adopters’ contributions

result in longer and more detailed software code documentation. This improved documentation

enhances the ability of other developers to track adopters’ progress and potentially learn from their

work. Moreover, this improvement in documentation may positively impact the size and traceability

of training data for large language models, which is constituted by openly accessible data such as

GitHub contributions. However, OSS platforms and developers must make this decision consciously

and be aware that enabling social comparison may induce stress among less active developers. Over

time, stress may not only harm individual developers but could also affect the platform, as the

resulting emotional strain can reduce developers’ willingness to contribute (Shankar et al. 2024).
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8 CONCLUSION

OSS developers’ contribution behavior is a social phenomenon that revolves around the infor-

mation displayed on developers’ public profile pages. However, prior literature has not sufficiently

explored how the presented information influences OSS developers’ contributions and affect. We

address this gap by investigating the effects of adopting a popular analytics dashboard on a

developer’s profile page. In our large-scale empirical study, we find that the adoption is a double-

edged sword—developers contribute more but this comes at the cost of increased stress induced

by excessive upward social comparison for some developers. These findings carry implications

for practitioners and researchers. Most importantly, interventions that influence OSS developers’

contribution behavior may have unexpected but decisive adverse effects.

NOTES

1For example, intense discussions revolved around the removal of a streak counter from user

profiles that displayed the number of consecutive days a user contributed to GitHub: https://gith

ub.com/isaacs/github/issues/627 and https://github.com/dear-github/dear-github/issues/163

(Retrieved January 2, 2025).

2https://github.com/anuraghazra/github-readme-stats/pull/960 (Retrieved January 2, 2025).

3Measuring the effort put into a contribution by its documentation length is a common proxy

that has proven effective in comparable online contexts (cf., Burtch et al. 2022, Pethig et al. 2024).

4To make it computationally feasible for the dependent variable NumCommits, the sample size

of non-adopters is reduced to twice the relevant adopters and the repetitions to five.
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